

CommAgility 5GNR Project

Overview

- Commagility 5GNR Internal Project Overview
 - Objectives
- Possible support activities
- Multi-access Edge Computing (MEC) trends
- gNB Architecture Proposal
 - MPSoC+FPGA
 - Moderate throughput & BW
- Extended Architecture for High Throughput & BW
- PHY software architecture
 - PHY software/hardware partitioning
 - Acceleration Model
 - Planned accelerators
- CA Design & Testing approach
- Reference C chain

Project Objectives

- Commagility has been 10 years at the forefront of LTE system development and aims to be so for 5G
- Extending Commagilty Products and Know-How on 4G with those for 5GNR
 - 5GNR IP for gNB and UE
 - 5G Reference Chain (ANSI C, fixed point)
 - 5G software and firmware IP for real-time implementation
 - Real-time implementation on validation platform, MPSoC + Ultrascale⁺ FPGA
 - 5GNR boards

Project Objectives

- 5G gNB Reference Chain
 - Blueprint for real-time algorithm development for a implementation on a product platform
 - gNB physical layer software
 - Tested for 3GPP performance
 - Validated against Keysight T&M and test vectors
 - Protocol stack software for Linux PC
- 5G real-time integrated system implementation & software and firmware IP
 - Blueprint for microarchitectural design of the product platform
 - Integrated system on validation platform, e.g.MPSoC + Xilinx Ultrascale⁺ FPGA (or Versal)
 - 5G IP for end-to-end system:
 - LDPC, Polar, Channel Estimator, Equalizer, Modulation chain, Demodulation chain, RX and TX HARQ Control, Channel Multiplexer, Channel Demultiplexer, Pre-coding, Digital Beamforming, PRACH, Sounder, Measurements, PUCCH, OFDM signal generation, OFDM signal receiver

Project Objectives

- 5GNR Boards
 - Boards design for ODM
 - Board level solution for private networks
 - Board level solution for end-to-end test systems
 - Inclusion of integrated RF solution for end-to-end system funtionality
- 5G UE Reference Chain, RT integration system implement, and SW&FW IP
 - Reference system for test vector generation
 - Integrated real-time system implementation for end-to-end gNB testing

5GNR Development steps

- C reference implementation
- Micro architecture design
 - Processor architecture
 - Memory architecture
 - Interconnect architecture
 - Resource allocation
- System architecture design
 - Coarse grain task partitioning
 - HW/SW partitioning
 - Micro-architecture components binding
- Signal processing blocks for computationally intensive data processing algorithms
- System control design
 - Control
 - Data flow
- System integration

5GNR Development Support

- PHY System design implementation
 - Northbound interface setup
 - Southbound interface setup
 - Support for HW component development (in the case of Soc or FPGA product platform)
 - Peripherals (i.e. hardware accelerator) drivers
 - Interconnect development
 - Control (system, sub-system, component) software development
 - Signal processing software components development
 - System integration & testing
- Digital RF FE development support
 - Southbound interface setup
 - Interconnect development
 - BB FE control & signal processing software development
 - RF control (handles) software development
 - System integration & testing
- Testing support
 - End-to-end system integration & testing
 - 3GPP Conformance testing
 - Deployment of Commagility 5GNR UE
 - Phased testing approach including early stage testing capabilities